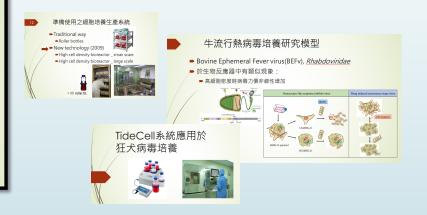
王祥宇簡介

- 學歷:
 - 高醫醫技學士
 - 成大微免所碩士
 - ▶ 交大生物醫學工程研究所博士
- ▶ 疫苗相關工作經歷:
 - 屏東科技大學動物疫苗科技研究所(2016~)
 - 施懷哲維克專案經理 (H1N1緊急疫苗生產、人用狂犬病疫苗製程設計) (2006~2012)
 - 高生製藥股份有限公司研發經理 (製程研發與病毒產品製造) (2000~2005)
- 研究領域:
 - 細胞與病毒交互作用
 - 病毒疫苗牛產製程開發
 - 疫苗佐劑與載體系統開發


今天分享內容

建立技術人員無菌概念

屏東科技大學動物疫苗科技研究所 王祥宇 副教授 at 行政院農業委員會家畜衛生試驗所 111年4月22日

狂犬病毒及季節性流感疫苗大型 生物反應槽技術經驗分享

屏東科技大學動物疫苗科技研究所 王祥宇 副教授 ot 行政院農業委員會家畜衛生試驗所 111年4月22日

建立技術人員無菌概念

屏東科技大學動物疫苗科技研究所 王祥宇 副教授

at 行政院農業委員會家畜衛生試驗所 111年4月22日

建立技術人員無菌概念

動物用藥品製造廠無菌操作確效 作業指導手冊

行政院農業委員會動植物防疫檢疫局

目 錄

第	_	章	前言.							 1
第	=	章	背景.							 2
			法	規層面						 2
		= ,	技行	析層面						 2
第	Ξ	章	範圍.							 3
第	29	章	建築	物與設	施					 4
			關金	建區域	(100 級	區,IS	〇第5	級區(L	JDAF))	 5
		= \								6
		三、	潔	爭區之	分隔					 7
		129 \	空	氣過濾						 7
										7
			(.	二)高	效率空	氣過濾	器過濾.			 8
		五、	-	,						9
第	<u>£</u>	章								12
		- `	人	員						 12
		= ,	,		,,					13
		= ,	人	員監測	計畫					 13
第	六	章								15
		- `								15
		= ,			_					15
										15
										16
第	t	章								18
	1									19
第	九	章								20
		- 1	.,.	- 1544						20
				-	, , , ,					20
				,						21
										21
										22
										22
										22
										22
										23
			(;	九) 註	驗結果	之闡釋.				 24

	=		過濾效能	25
	Ξ	•	設備、容器與封蓋的滅菌	26
第	十章		實驗室管制	28
	_	•	環境監測	28
			(一)一般的書面作業計畫	28
			(二)建立限度與趨勢分析作業計畫	28
			(三)消毒作業的效能	29
			(四)監測方法	29
	_	,	微生物培養基與鑑定	30
	Ξ	•	過濾前的生物負荷	31
	四	`	替代的微生物學的試驗方法	31
	五	`	微粒子的監測	31
第	+-	章	無菌試驗	32
	_	,	方法選擇	32
	=	•	培養基	32
	Ξ	•	人員	32
	129	,	取樣與培養	32
	五	•	無菌試驗呈現陽性結果的調查	33
第	十二	章	檢視批次紀錄:處理管制文件系統	35
詞	彙			
參	考資料			41

生產廠無菌概念原則_ 結構

- ▶法規與技術背景
- ➡廠房建物硬件
 - ▶潔淨區域劃分與清淨度規範
 - ■空氣系統
 - ▶水系統
- ▶製程設計

生產廠無菌概念原則_人員操作及試驗相關

- 更衣程序與驗證
 - 教育訓練
 - 確效方法
 - ▶驗證效期
- 無菌操作基本概念
 - 環境清潔
 - 氣流與環境維持
 - ▶ 清潔與準備:組成物與容器/封蓋
 - ▶ 製程與滅菌確效
- ▶ 各種管制程序落實程度
 - ▶ 各種設備效期追蹤
 - 時間界線的規則遵循程度

■ QC實驗室無菌試驗

更衣程序與驗證

更衣程序無菌相關

▶ 洗手:把等一下要碰外層衣服的主要污染表面清潔完畢。

■ 一更:

- ▶ 把不必要的身上配件都去除:耳環、戒指、項鍊 (洗手前去除)
- ▶ 除去外層衣物
- ▶ 換上工作服,把身上拿不掉但是可能藏菌的區域蓋起來:頭髮、眼睛、眼鏡

■ 二更:

- ▶ 外層要做到無菌
- 注意更衣環境污染源:地板、露出的皮膚表面、一更帶過來的第一層手套、還沒包起來的髮絲、眼睛

更衣驗證參考

Q1:

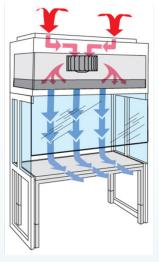
更衣驗證效期時間長度? 一年一次是普遍可接受的區間

Q2:

潔淨等級不同是否需要分別執行更衣驗證?

Yes

1.0 更衣驗證方法:


- 1.1 更衣完成後,在驗證之同等級潔淨室內進行驗證,使用接觸培養皿採樣。
- 1.2 測試點: A/B級區工作人員之左右手所有手指(Gloves)、左右袖口(Sleeve at glove interface)、左右手肘(Elbows)、前額(Forehead)與前胸(Chest)共 8 點 (如圖之黃標所示),每點使用一個接觸平板培養皿。
- 1.3 測試點: C、D級區工作人員之左右手所有手指(Gloves)、左右手肘(Elbows)、前額(Forehead)與前胸(Chest)共 6 點(如圖之黃標所示),每點使用一個接觸平板培養皿。
- 1.4 測試流程:手肘、前額、前胸於採樣位點黏貼5-10秒後蓋回蓋子完成取樣,手指 部位取樣時應確定5隻手指內側輕觸培養皿5-10秒才完成取樣(先四根手指頭再 以大拇指按壓)。
- 1.5 測試完成的培養皿連同填寫完成的QC TEST REQUEST FORM送至QC進行培養。
- 1.6 培養皿培養條件:將培養皿倒置於 32.5±2.5℃ 之培養箱中培養2~3天。
- 1.7 合格標準:B級區
 - 1.7.1 L/R手指(Gloves): <1cfu
 - 1.7.2 L/R左右袖口(Sleeve at glove interface):<3cfu
 - 1.7.3 L/R左右手肘(Elbows): <3cfu
 - 1.7.4 前胸(Chest): <3cfu
 - 1.7.5 前額(Forehead): <3cfu
- 1.8 合格標準: C級區
 - 1.8.1 L/R手指(Gloves): <25cfu
 - 1.8.2 L/R左右手肘(Elbows): <25cfu
 - 1.8.3 前胸(Chest): <25cfu
 - 1.8.4 前額(Forehead): <25cfu
- 1.9 合格標準:D級作業區
 - 1.9.1 L/R手指(Gloves): <50cfu
 - 1.9.2 L/R左右手肘(Elbows): <50cfu
 - 1.9.3 前胸(Chest): <50cfu
 - 1.9.4 前額(Forehead): <50cfu
- 1.10 不合格者針對更衣穿著程序個別教育訓練,再重新進行更衣測試。


無菌操作基本概念

無菌操作

- 100% 區別 無菌 與 非無菌
- 產品只在最高級潔淨區開蓋
- 心中永遠有氣流方向

所以手不經過打開的瓶口是自然而然、理所當然

Vertical Laminar Flow Hood

Horizontal Laminar Flow Hood

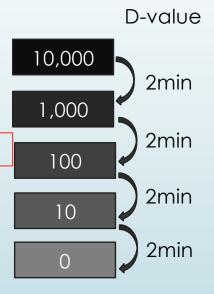
https://noteshippo.com/laminar-flow-hood-cabinet-definition-parts-principle-typesuses-and-check-list/

https://www.labconco.com/articles/laminar-flow-inthe-laboratory

製程無菌確效

- 無菌製程確效最常用的方案: → 模擬充填
 - ▶ 充填細菌用液態培養基
 - ▶ 故意增加部分特殊突發狀態,例如:停機、或搬遷設備等
 - 盡可能模擬實際製程作業,以確保其"無菌性"
- ▶ 頻率:新產線必須至少連續三次成功。
- ▶ 批量:5,000~10,000 單位 (或生產批次中的最大批量)
- ▶ 速度:使用較慢的作業速度,模擬最長時間的產品暴露狀態。
- 環境條件:實際操作時的條件。

模擬充填發現污染的處理建議


- 當充填數量少於 5000 單元時,不可偵測到有污染單元。
 - -- 發現一個污染單元時應進行調查並考慮執行再確效。
- 當充填數量介於 5000 到 10000 單元時:
 - -- 發現一個污染單元時應進行調查並考慮重做培養基充填。
 - -- 發現二個污染單元時應進行調查並考慮執行再確效。
- 當充填數量超過 10000 單元時:
 - -- 發現一個污染單元時應進行調查。
 - -- 發現二個污染單元時應進行調查並考慮執行再確效。

滅菌確效

- 過濾效能
 - 每種流體因黏度、pH、濾膜相容性、壓力、流速、滲透壓...等因素,過 濾效力大相徑庭 →所以需要確效
 - **bioindicator:** Brevundimonas diminuta (0.3um超小隻菌)
 - **■** 10⁷ CFU/cm₂ 的過濾效能確認
 - 過濾前後的濾膜完整性確認是必須的
- 蒸汽滅菌
 - ▶ 生物指示劑是必要的

D值:在滅菌條件下,將生物指示劑中微生物殺滅一個對數單位(=90%)所需的時間

▶ 驗證:空槽(→畫製溫度分布圖)、裝載狀態(→尋找冷點)

環境監測

- ▶ 我們的能力只可能維持很小區域的範圍無菌
 - 例如:自動分注器針頭輸出區
- 既然,不可能讓整個無塵室無菌
- 所以,就調查會有那些菌群在我們廠裡吧 (建立環境常在菌年度檔案)
- 從書面作業計畫開始,包含:空氣、地板、牆壁、與產品或容器接觸的關鍵裝備表面
 - 建立監測水準與趨勢分析 、消毒作業效能
 - 地板與牆壁等表面:觸摸平板法(touch plates)、擦拭法 (swabs)、接觸平板法(contact plates)
 - ➡主動空氣監測:薄膜過濾法、slit to agar sampler等
 - ▶被動空氣監測:落菌法

生產廠無菌概念原則_實驗室操作 (QC)

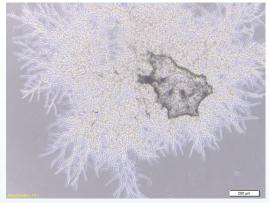
■ 無菌試驗的基本概念:

Q:一批有10%污染的樣品中,在十次的試驗裡將近有九次無法被偵測出來

- 所以,只要出現無菌試驗陽性時,顯示問題非常嚴重。
- ▶ 所以,取樣操作造成的偽陽性必須極力避免。
 - "無菌試驗環境必須與充填/封蓋作業匹配的措施與管制"
 - ▶ "在隔離裝置進行無菌試驗已被認為可使偽陽性結果降至最低"

因為此試驗有限的靈敏度,任何呈現陽性的結果都被認為是嚴重的

無菌試驗陽性結果調查


- ●第一步:確認QC實驗室檢驗偏離(deviation)問題
 - ■初步排除偽陽性
 - ➡分離菌(A/B級區)必須鑑定,釐清可能來源
 - ●平時建立收集QC實驗室內的環境常在菌資料庫
 - ●目的:陽性報告發生時,基礎調查用的重要背景資料
 - ■好的實驗室溯源資料有助於快速排除實驗錯誤

因為此試驗有限的靈敏度,任何呈現陽性的結果都被認為是嚴重的

生物製劑污染種類

- ■真菌
- →細菌
- ●病毒
- →細胞

生物製劑產品

■如何保證只有標示的微生物材料出現在產品中

檢驗方法基本概念

• 人類無法直接檢驗我們不知道的標的物

病毒迷入範例 PCV1 in the Classical swine fever vaccine (HCV-LPC)

- PCV1 發現時間 (1974)
 - 2000年,發現許多以PK細胞株培養的傳統豬瘟活毒疫苗含有PCV1污染病毒顆粒
 - 2010年,發現人用 Rotavix活毒疫苗含有PCV1污染病毒顆粒

■ 細胞培養 (PK15 in BCRC)

Strain Collection Catalog & Shopping cart

Login | My Shopping Cart ≽ (0 items) | Contact Us | BCRC Home

Home Reference Search

Medium Search

New Resources

Reference Strain

Description: The cell line harbors an endogenous C-type retrovirus; the cells are positive for porcine circovirus (PCV) antigens; the cells are positive for keratin by

Tissue:

immunoperoxidase staining.

Product Character: plasminogen activator; keratin

Age Stage:

unknown Kidney; norma

Morphology: Epithelial
Split Ratio: 1:2 to 1:4
Isoenzyme Analysis: MD; G6PD; LD
Mycoplasma Test: negative

Virus susceptibilit

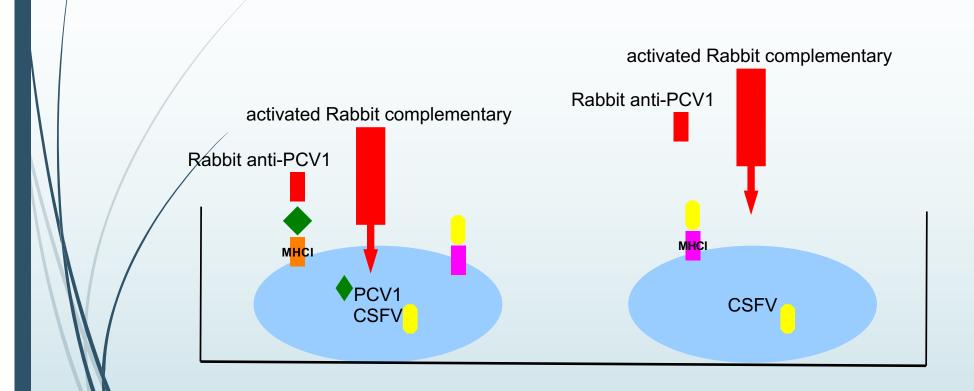
hog cholera; African swine fever; vesicular exanthema of swine; foot and mouth disease (FMDV); vesicular stomatitis (Indiana); vaccinia; reovirus 2, 3, adenovirus 4, 5; coxsackievirus B2, B3, B4, B5, B6

Story: the Project of PCV1 Elimination

In 2000, we found that almost all PK cells in the world were contaminated with PCV1

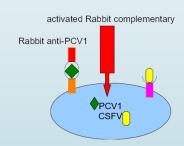
.....all virus cultured in PK cells were contaminated

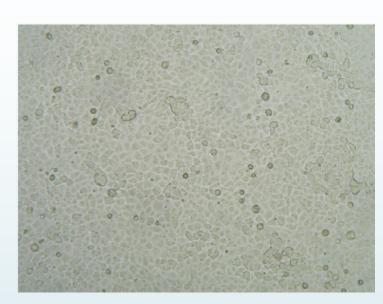
Methods to eliminate PCV1 in vaccine production:

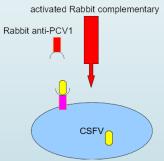

a new clean cell line

Ultra-speed centrifuge of virus

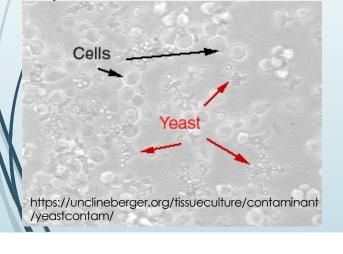
siRNA technology


use antibody neutralizing virus


Story: the Project of PCV1 Elimination

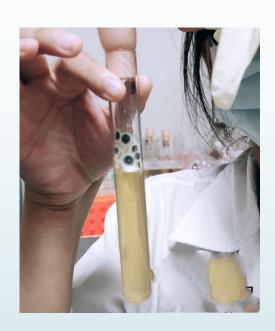


Story: the Project of PCV1 Elimination



真菌

- ➡ 菌絲體 (可大可小,不一定會開出小花)
- ➡ 酵母菌型態 (看起來像很大顆的細菌)
- ▶ 產線危害度第一名:
 - 可藉由孢子污染
 - 生長時間長→要收成了才發現



真菌_製程處理方案

- 每一個階段的無菌試驗取樣_非常重要
 - 種毒製備
 - 細胞放大階段
 - 接種後
 - ▶半成本收穫
 - ■成品
 - ## 真菌污染好發
 - → 人員技術問題
 - → 環境確效

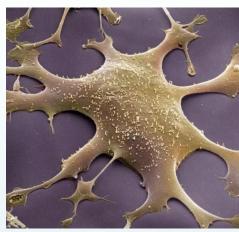

細菌

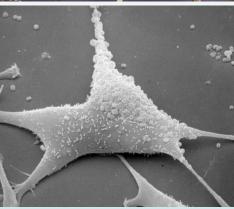
- 相較容易發現
 - 生長速度較真菌快
 - ➡ 代謝旺盛,產酸明顯
- 相較容易處理
 - 發現快,損失較低
 - ▶ 特定情況下可使用抗生素

細菌污染好發 > 人員技術問題

Bacillus spp.

https://www.protocols.io/view/mammalian-cell-culture-refreshing-media-xqifmue.html


細胞污染


 TABLE 12.2.
 Commonly-used Cross-contaminated Cell Lines (see Appendix V and www.hpacultures.org.uk/collections/ecacc.jsp for extended list)

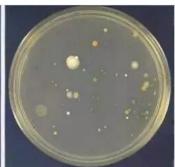
Cell line	Claimed species	Claimed cell type	Contaminating cell line	Actual species	Actual cell type	Reference
ALVA-31, 41	Human	Prostatic carcinoma	PC-3	Human	Prostatic carcinoma	Varella-Garcia et al., 2001
BrCa 5	Human	Breast carcinoma	HeLa	Human	Cervical adenocarcinoma	Nelson-Rees et al., 1981
CaOV	Human	Ovarian carcinoma	HeLa	Human	Cervical adenocarcinoma	Nelson-Rees & Flandermeyer, 1976
CHANG liver	Human	Embryonic liver epithelium	HeLa	Human	Cervical adenocarcinoma	Nelson-Rees & Flandermeyer, 1976
COLO-818	Human	Melanoma	COLO-800	Human	Melanoma	Macleod et al., 1999
Det98	Human	Sternal marrow	HeLa	Human	Cervical adenocarcinoma	Nelson-Rees & Flandermeyer, 1976
ECV-304	Human	Normal endothelium	T-24	Human	Bladder carcinoma	Dirks et al., 1999
EJ-1	Human	Bladder carcinoma	T24	Human	Bladder carcinoma	Azari et al., 2007
Girardi Heart	Pig	Adult heart	HeLa	Human	Cervical adenocarcinoma	Nelson-Rees & Flandermeyer, 1976
HBL-100	Human	Breast transformed but nontumorigenic cells	unknown	Human	Unknown; not female	ATCC
HBT-3	Human	Breast carcinoma	HeLa	Human	Cervical adenocarcinoma	Nelson-Rees & Flandermeyer, 1976
HEK	Human	Embryonic kidney	HeLa	Human	Cervical adenocarcinoma	Nelson-Rees & Flandermeyer, 1976
НЕр-2	Human	Laryńx epidermoid carcinoma	HeLa	Human	Cervical adenocarcinoma	Chen, 1988
INT 407	Human	Embryonic intestinal epithelium	HeLa	Human	Cervical adenocarcinoma	Nelson-Rees & Flandermeyer, 1976
KB	Human	Orolaryngeal carcinoma	HeLa	Human	Cervical adenocarcinoma	Gartler, 1967; Lavappa et al., 1976; Nelson-Rees et al., 1981; Ogura e al., 1993
L132	Human	Embryonic lung epithelium	HeLa	Human	Cervical adenocarcinoma	Nelson-Rees & Flandermeyer, 1976
McCov	Human	Synovial cell	Strain L	Mouse	Connective tissue	Nelson-Rees & Flandermeyer, 1976
MDA-MB-435	Human	Breast carcinoma	M14	Human	Melanoma	Ellison et al., 2003; Christgen & Lehmann, 2007; Rae et al., 2007
MCF-7ADR	Human	Breast carcinoma (adriamycin resistant MCF-7)	OVCAR-8	Human	Ovarian carcinoma	Liscovitch & Ravid, 2006
MOLT-15	Human	T-Cell leukemia	CTV-1	Human	Monocytic leukemia	MacLeod et al., 1999
NPA87	Human	Thyroid cancer	M14/MDA-MB-435S	Human	Melanoma	Schweppe et al., 2008
PC-93	Human	Prostatic carcinoma	HeLa	Human	Cervical adenocarcinoma	van Bokhoven et al., 2003
PPC-1	Human	Prostatic carcinoma	PC-3	Human	Prostatic carcinoma	Varella-Garcia et al., 2001
TE-671	Human	Medulloblastoma	RD	Human	Rhabdomyosracoma	Stratton et al., 1989; Chen et al., 1989
U-373 MG	Human	Glioblastoma	U-251 MG	Human	Glioblastoma	Ishii et al., 1999
WISH	Human	Newborn amnion epithelium	HeLa	Human	Cervical adenocarcinoma	Nelson-Rees & Flandermeyer, 1976

最令人討厭的產線污染 →Mycoplasma spp.

- 主要來源
 - ▶ 操作人口腔與粘膜部位分泌物
- 最方便的污染接種方案
 - ▶ 坐在無菌操作台前聊天
- 令人討厭的原因
 - 檢測不易
 - 抗生素效果不佳

https://www.biobool.com/news/190.html


Mycoplasma spp. 檢測


■/直接培養法

● 使用黴漿菌培養基

▶ 優點:最直接靈敏的方法

➡ 缺點:時間太長(3~5週),且某些菌株不易培養

https://www.biobool.com/news/190.html

螢光染色法

■ bisbenzimide, Hoechst 33258 → A-T rich staining (Mycoplasma DNA 55~80%)

▶ 優點:染色操作速度快,樣品可以保存較長時間

➡ 缺點:細胞操作不良的凋亡現象可造成偽陽性干擾,菌量低時不易判定。

specific primer for 16S-23S rRNA

▶ 優點:操作迅速,可依產物大小初步評估種類鑑定

➡ 缺點:PCR反應本身容易污染,造成偽陽性結果

黴菌、細菌、黴漿菌污染處理方案

- ▶移除所有相關材料:
 - ➡細胞、培養基、PBS、Trypsin
 - ▶對相關的環境操作區清潔消毒
 - ●大範圍氣體消毒: formaldehyde (X)、O₃
 - ■消毒液清潔擦拭
 - ■抗生素、抗黴漿菌試劑→生產廠不適用

生物製劑基本概念

■ 只有標示的微生物材料允許出現在產品中

檢驗方法基本概念

• 人類無法直接檢驗我們不知道的標的物,真的嗎?

→針對微生物,目前的解套方法

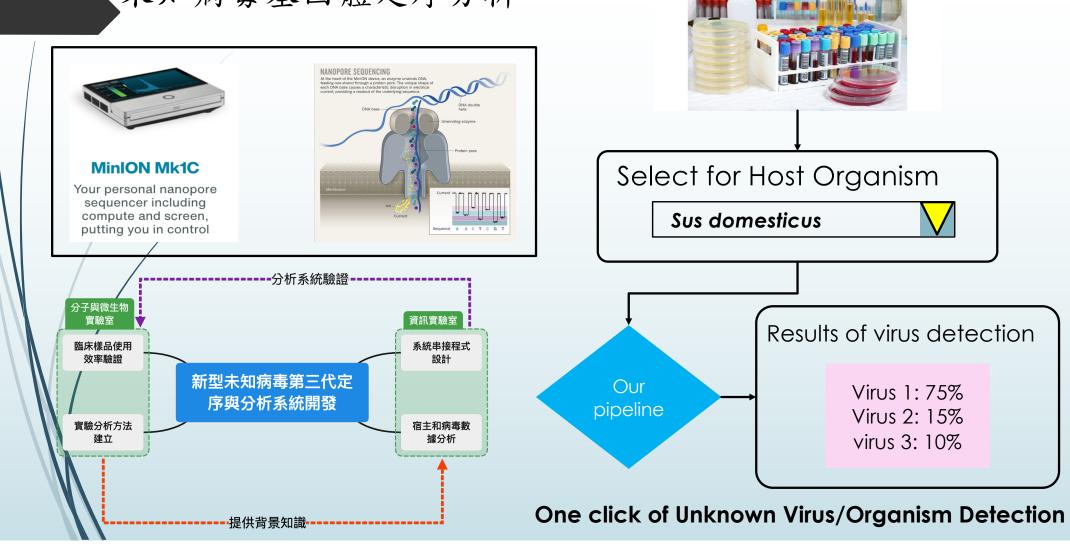
病毒迷入試驗

- ■目前的檢驗方法設計概念:
 - ■血球吸附試驗排除法
 - ●中和試驗後細胞培養CPE觀測排除法
 - ▶中和試驗後雞胚胎培養病變觀測排除法
 - ●能做的相關標的物種能猜的PCR全上排除法

未知病毒在疫苗及生物製劑之檢測 (種毒純粹試驗)

定序技術對未知病毒分析

優勢


- 1. 不需要先行排除血球凝集特性的病毒。
- 2. 不需要用抗體中和已知病毒。
- 3. 不需要進行細胞培養。
- 4. 直接對未知病毒基因體進行定序分析。

長片段定序技術

優勢

- 1. 直接定序整個病毒基因體。
- 2. 節省大量實驗操作時間。
- 3. 比對病毒基因體資料庫判定物種。

未知病毒基因體定序分析

Fundamental Principle of Clinical Specimen Collection

感謝您的聆聽

email: hyw@mail.npust.edu.tw